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Abstract. General time-dependent two-point correlation functions for simple ring polymers 
in the presence of both self-avoiding and hydrodynamic interactions are calculated to O ( E )  
( E  = 4- d, d being the spatial dimensionality) using renormalisation group techniques. 
Results are presented in universal functional form to O ( E ) .  

Renormalisation group ( RG) ideas have been of outstanding importance in the modern 
development of the statistical mechanics of systems which are close to a critical point. 
In particular, the powerful E expansion provides one of the most reliable methods to 
determine critical exponents and scaling functions. It allows the analytic calculation 
of universal properties by means of a systematic expansion in powers of E = d , -  d 
around the upper critical dimension d , .  

This technique has been successfully applied to study universal properties of flexible 
polymer chains which possess a critical point if the chain length N tends to infinity. 
While many static universal properties could be studied using the rather formal polymer 
magnet analogy [ 11, i.e. by using scalar field theories in which the number of components 
n has to be analytically continued to n = 0, it has not been possible so far to investigate 
dynamical properties within this approach. Therefore, in order to overcome this 
obstacle, another technique [ 21, based upon a more intuitive statistical mechanics 
description of a flexible polymer chain [3], has been devised. Within this new technique, 
denoted as conformation space RG, many static properties of both dilute and semidilute 
solutions have been studied in great detail [4]. Quantitative calculations for time- 
dependent properties have also been performed in this scheme, but only quite recently. 
Quantities of central interest among the transport properties of dilute polymer solutions 
are the diffusion constant [ 51, time-dependent correlation functions [6], relaxational 
spectra [7], the dynamic scattering factor [8,9] and most importantly the intrinsic 
viscosity [lo-121. 

The minimal model (defined below) which has been studied within the RG 

framework yields many universal predictions for transport properties, which can be 
compared with experiment. These predictions, which have mainly been derived for 
flexible linear chains can also be investigated for flexible simple (single) ring polymers, 
another class of experimentally interesting systems. In particular, comparison of 
transport properties of linear and ring polymers will enable one to answer the question 
of how ring formation will affect universal properties of flexible (Gaussian) polymer 
chains. We have recently [ 131 investigated explicitly time-dependent correlations for 
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a simple ring polymer in the presence of hydrodynamic interactions, and have extracted 
the translational diffusion constant and the relaxational spectrum. Further we presented 
the scaling function in universal form to O ( E ) .  

In this paper we will extend our previous study by also taking into account 
self-avoiding interactions to O( E ) .  Furthermore, we will derive the most general 
two-point correlation function of a simple ring polymer in the presence of both 
self-avoiding and hydrodynamic interactions in universal form to O( E ) .  Before present- 
ing any details, let us stress a remarkable property of such ring structures. In order 
to model a simple ring, we will consider a free (Gaussian) random walk subjected to 
periodic boundary conditions. This provides a simple example of a non-Markovian 
but Gaussian process. The correlation and Green functions for this process reflect this 
circularity condition. In the subsequent expansion in powers of the self-avoiding and 
hydrodynamic couplings around the free theory corresponding to the Gaussian random 
walk many terms vanish because of this internal symmetry. As a consequence, we find 
that all two-point correlation functions calculated to one-loop order have essentially 
the same form as the corresponding free correlation functions, apart from a modified 
relaxational spectrum, a modified diffusion constant and a modified dependence on 
the renormalised chain length N (in the presence of self-avoiding interactions). The 
starting point of our investigation is the following set of Langevin equations describing 
coupled chain solvent dynamics [ 141: 

together with the incompressibility condition V U = 0. In ( l a ,  6), {c(T, t)},"=oo describes 
the conformation of a polymer with bare chain length No parametrised by a contour 
variable T at time t. lo- A i 1  is the bare translational friction constant per chain unit, 
go is the strength of the hydrodynamic interaction (the coupling to the solvent velocity 
field), u(x, t )  describes the solvent velocity field, qo is the bare solvent viscosity, A is 
the Laplacian and p denotes the pressure. HE is the Edwards Hamiltonian [3] 

with vo being the bare excluded-volume parameter and 8, f are Gaussian random 
processes with zero mean and covariance given by 

(e( T,  t )  e( a, s)) = 25;Is( T -  V)S( t - ~ ) z  
(f( X, t ) f (  x', s) )  = -27,3AS(~ - x')S ( t - S) Z 

(3)  

(4) 

where I is the d x d unit matrix. One can show [4] that to O ( E ) ,  i.e. lowest order in 
the couplings, and by using the Markov approximation for the solvent velocity field, 
the coupled equations ( l a ,  6)  are equivalent to the Kirkwood diffusion model. 

It is convenient to convert the two coupled Langevin equations (1 a, b )  into a path 
integral with an effective Lagrangian describing the dynamics of dilute polymer solu- 
tions. This procedure, which has been described recently in [ 121, essentially follows 
a method which has been developed in [ 1 5 ]  for critical dynamics. The effective 
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Lagrangian describing the system (la, b )  can be decomposed into a free part Jo and 
an interaction part J ,  , J = J o + J ,  with 

describing the conformation field and 

J h 2 ) =  ddx dt[u(x, t)v0(iV)2i(x, t ) -  i ( x ,  t )d,u,(x,  t ) - i ( x ,  t)~0(iV)2u,(x,  t ) ]  ( 6 )  I I  
describing the solvent velocity field. In ( 6 ) ,  I denotes the transverse part. In ( 5 )  and 
( 6 )  we have introduced two new (imaginary) fields, C(r, t )  a conformation response 
field and i ( x ,  t )  a solvent velocity response field. The interaction terms containing the 
self-avoiding interactions can be written 

where 

and the hydrodynamic interaction terms can be written 

Note that we have introduced a Fourier transform for the S function in equation ( 7 ) .  
From equation ( 5 )  we obtain the free response propagator (c(r, t )c(a ,  t’)): for the 

conformation field of a simple polymer ring (R).  Introducing normal coordinates into 
( 5 ) ,  which, in order to account for the periodic boundary conditions of a ring, are 
chosen in the form 

X -c 

c ( r ,  t )  = 1 QVLgP)+ Qk’,’gf’ ( 9 a )  
k = O  k =O 

X 

C ( T ,  t ) =  k = O  1 QYLlY)-I- k 1 =O  Q$)&” (96) 

with 

2nk7 
Q?:‘ = ( L, NO cos( -) NO 
Qk? = ($-) sin( -) 

k = 1,2 ,  . 

k = 1 , 2 ,  . . . 21rkr 
NO 

k = O  

we obtain [ 1 3 ]  

(C‘ (T,  t ) C ( ( T ,  t ’ ) ) t = @ ( f ‘ - f ) G ; ( ~ ,  r l t ’ - t )  



2868 B Schaub and B Schmittmann 

where 
X 

G , " ( ~ , a ( t ) = -  1 + 2  1 c o ~ 2 ~ ~ ( 7 - ~ ) e x p ( - A ~ t )  No k = l  

is the Green function matrix with io = r k /  No and A t  = Ao(2rk/ No)'. 
From (1 1) we determine the static (equilibrium) correlations (c( T )  c(  T'))," to be [ 131 

( c (  7) * C( T'))," = d min( T, 7 ' )  - ( d /  No)m' .  (13) 

From (13) it follows that the free correlations of a Gaussian ring polymer are smaller 
than those of a linear chain, due to the second term in (13). 

In the following we will need the general two-point correlation functions of the 
form (c( T,  t )  - c(  U, s)),". We find, for t > s, 

-cos 2p^,~ exp(-AFt)-cos 2p*,~ exp(-A~s)]+2Aos/No. (14) 

( [ c ( a ,  s ) - - ( P ,  s)l ' )o"=d[b -PI -No'(a-P)* I  (15) 

In particular we have 

which may be compared with the corresponding result for a linear chain (L) 

( [ c ( a ,  s )  - C ( P ,  s)l2)0L = dla -PI. (16) 

Let us now consider the correlation function (~(7, t )  C(T, t ) )  in the presence of 
self-avoiding interactions. Utilising our path integral formulation, we have 

(c(T, t )  C(T, t ) ) =  d{iC, C}C(T, t ) c ( T ,  t )  expJ. I 
It is essential to note that this path integral has to be evaluated under a constraint. It 
is convenient to specify the conformation ensemble at t = 0: it should be an equilibrium 
ensemble governed by the (static) Edwards Hamiltonian, including self-avoiding inter- 
actions. Thus, we obtain to first order in the coupling uo: 

(47, t )  47, t ) >  = (47, t )  * 47, t))o,@) - ~ O A O  joNo d a  IoNo dP I ds (;(a,  $1 

)o (18) ikc(T, r )  . c(T, t )  e ik [c (u . s ) - c (As ) l  Ik 
where ( 

Consider the first contribution in (18) .  The correlation (c(T, t )  C(T, t ) ) o ( w l  appears 
due to the constraint and has to be evaluated in the presence of self-avoiding interac- 
tions: 

denotes averaging with respect to J o .  

(c(T, t )  - C(T, t))o(al  = {dc}c(T, t )  I 
= I {dc}c( 7, t )  * c(  T, t )  e-Ho( 1 + o(vo)) 
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where Ho is the free (Gaussian) part of the Edwards Hamiltonian, and the O(uo) 
contribution is given by 

which can be calculated introducing a generating functional. We find 

Using ( 1 1 )  together with B(0) = O  (causality), we find for the second term in (18)  

The remaining average in (22) can again be evaluated introducing a generating func- 
tional. The result is 

Adding all contributions, we finally secure 

x ([c(a, s) - c(P, s ) l 4 7 ,  t ) ) o  exp -5 7 ([c(a, s )  - c(P1 s)12)0). ( l k 2  (24) 

Using equations (14) and (15 )  and performing the time and momentum integrations, 
we find that the remaining contour integrations can be reduced to the following type 
of integral: 

- 3 + ~ / 2  

(cos 250a -cos 250,p)2 
joNa d a  joNa dP(  la -PI - 1 

( a  - P Y 

- - (: Ng'2+4[~i(27rp) -In 27rp - 93 +6-6  

where 9 is Euler's constant 
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and we have introduced a function 

A R ( p )  = -.rrp[si(.rrp)+~.rr]+2[ci(.rrp)-ln(.rrp)- ?I. (26) 

Due to the aforementioned internal symmetry, all double sum contributions can be 
shown to vanish. We are then left with 

= COS2P*OT 2A f 
~ e x p ( - h , ” r ) + L  

p = l  (.rrP)’ NO (c(T, t )  ‘c(T,  t ) ) / d  =:No- No 

1 U0 No f cos2j$o7 No -+21n No -- ~ +- - exp( - A F f )  1 U0 (: ) 4 ( 2 ~ ) ~ ”  p = ~  (.rrp)* 12 (2rr)d/2 

+ 4 In No + 4[ ci( 2 .rrp ) - In 2 .rrp - ?] + 6 - 6 

x (:+ 4 In No+4[ci(2.rrp) -In 2.rrp - ?] + 6 - 6 

Renormalisation is performed with 

N = ZNNo 

5 = 4 5 0  

vo = UoL-E” 

where L is the usual external length scale. In lowest order we have 

2 u  
Z , = l + - -  

E (27r)2 

E (2.rr)2‘ 
2 u  -I---  

i- 

In order to obtain a result for ( c (  T, t )  C( T, t ) )  which is valid in the limit of large times 
t ,  we cannot-after inserting the value of U at its fixed point U* =O(E)-naively 
exponentiate the results to O ( E ) .  Rather we have to use the idea of singular perturbation 
theory [16] and exploit the asymptotic behaviour of the relaxation times as dictated 
by the renormalisation group equation [4]. This procedure (see [lo] for a discussion) 
amounts to introducing an  effective eigenvalue for the relaxation spectrum by exponen- 
tiating single sum terms which have prefactors linear in the time t (see the last term 
in (27)). At the fixed point 

U* E 

( 2 ~ ) ’  - 8 

we find the relaxation spectrum for a ring in the presence of self-avoiding interactions 
to O ( & )  

AR=-(-)*($)‘’“..p 1 2 r p  [:( 
P 5 N  



Two-point correlation functions for ring polymers 2871 

Finally, introducing a new time unit f =  t A p (  p = l ) ,  A, = h , / h , ( p  = 1)  and  7 = r /  N we 
can write our result at the fixed point U* in universal form 

27 
( ~ ( 7 ,  T )  * c(?, T))R exp(-eCP) 

where 

$-ci(27~)--+-- 
2 2 7T2 

3 3 AR(2p) 
H ~ p = c i ( 2 ~ p ) - l n 2 ~ p - $ + - - -  ~ 

2 2 (.rrP)z 
(33) 

and  Y = ~ + & E  is the Flory exponent. 

correlation function ( c (  7, t )  c( a, s)) in the following way: 
Having determined ( c ( 7 ,  t )  C(T, t ) )R we can now evaluate the general two-point 

([C(T, t ) - c ( a ,  s)l2)=(C(7, t )  ' C(7, t ) )+(c(a ,  S )  * C ( a ,  s))-2(C(7, t )  ' C ( a ,  S I ) .  (34) 
As C (  7, t )  - c( a, s)  is a polymer internal vector, we can exploit translational invariance, 
which gives 

([c(7, t )  - c(a ,  -([c(7, t - s) - C(U,  ())I2). (35) 
Note, however, that this is only valid for correlation functions which are the square 
of the difference of two conformation field vectors, but not for correlations like 
([c(a, s) - c(& s)] * C(T, I ) ) ,  because we have chosen a convention in which c(0,O) = 0. 
This dependence on the choice of origin must drop  out of correlation functions in 
order for translational invariance to be valid. Using (35), we have 

( C ( T , f ) ' C ( ( T , S ) ) = ( C ( T , t - S ) ' C ( ~ , O ) ) + ~ ( C ( T ,  t) 'C(7,  t ) )  

- +( c( 7, t - s) * c( 7, t - s) + ;( c( a, s ) c( a, s)) 

- f (c (a ,  0) * c ( a ,  0)). (36) 
Therefore, apart from ( ~ ( 7 ,  t )  4 C(T, t ) )  we only need to calculate ( ~ ( 7 ,  t )  * c (a ,  0)). This 
calculation parallels the one described and we only quote the result. We find in 
universal form to O( E )  

n 
I. JW we turn to the discussion of hydrodynamic interactions. In 131 we reported the 
result of ( ~ ( 7 ,  t )  - c(7, t ) )  to O ( E ) .  We found in universal form at the non-draining 
Gaussian fixed point 5* = ;T'E (5 = 

(c(7, I )  * c(?, I ) )R /dN 



2872 B Schaub and B Schmittmann 

with Cp=$ci(27r)-$q and 

The correlation ( c (  7, t )  - c(  U, O))R is then given by 
1 1 = cos27rp6 

12 2,=1 (7rp)’ ( ~ ( b ,  r )  ~ ( 5 ,  O)jR/dN =--- c 
1 = cos27Tp(b-6) 1 cos 27Tpb 

exp(-i,Rr)-- c exp(-/r,Rr). (40) 2p=1 (..PI2 +? c 
P = l  (..PI2 

To lowest order (0( E ) )  there are no cross-terms between self-avoiding and hydro- 
dynamic interactions. Thus we just have to add the results for both cases (counting 
the free term only once) and obtain at the fixed point u * / ( ~ x ) ~  = $ E ,  5 * / ( 2 ~ ) ~ = $ ~  for 
the relaxational spectrum: 

We then secure, utilising (36), for the most general two-point correlation function: 
2s 

exp-ecp) 

exp[-/r,”( f- S)] exp 
1 a: cos27rp(b-d) 

p = l  (.rrd2 
1 cos 27rp6 
2,=1 (TP)* 
1 cos27rpb 
2p=1 (7rp)2 

+: c 

-- f 

-- c 

where 

The sums over p in (42) converge rapidly and for a numerical evaluation it is 
sufficient to sum up to p = 50. 

To summarise, we have determined the most general two-point correlation function 
for simple ring polymers in the presence of both self-avoiding and hydrodynamic 
interactions to O( E ) .  From our RG analysis have emerged the properly scaled variables 
7, 5 and i, S as well as the correct N dependence - N 2 ”  of the prefactor in (42). Once 
the renormalised correlation function is expressed in the new variables, its functional 
form is essentially identical to its bare equivalent. Note also that the diffusive behaviour 
-5 of the centre of mass dominates for long times, while the internal ring motion 
becomes important for short times ( f ,  S + O  but still t ,  s >> 1). 

As already mentioned in the introduction, the ring structures are distinguished from 
linear chains by their remarkable symmetry properties (due to the circularity condition). 
In general, universal properties obtained within an RG analysis reflect the different 
topologies of rings and linear chains. I t  would of course be of great interest to compare 
our results with numerical simulations. So far, however, numerical results, such as 
[17], have been obtained for linear chains only. A numerical study of simple ring 
polymers, with a view to the results reported here, would certainly be worthwhile. 
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